If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-36y+105=0
a = 3; b = -36; c = +105;
Δ = b2-4ac
Δ = -362-4·3·105
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6}{2*3}=\frac{30}{6} =5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6}{2*3}=\frac{42}{6} =7 $
| 3x=2(1/3) | | 1050=(450/1x)+(470/1x^2) | | 5/8y=120 | | c/0.3=0.9 | | 3x+23=144 | | 5x-11+4x=24-x+5 | | 126=8x-10+4x+16 | | (5x-5)+(3x)=180 | | 96=12x3 | | 13k^2-38k=0 | | 4x-10=6x-14 | | 7(8-x)=56-21= | | 2(x+9)=30+18= | | 60=100x5 | | 9(x-3)=10x18 | | t+11=-2t-16 | | 6k-13=7-4k | | 6=b-25 | | 88x99=Y | | 1.5p=4 | | 5(2+7x)=45 | | 2=18+o | | 726=n+282 | | 7x+7=10x-36 | | 3e-5=11 | | 5x-3-2x=3x+1 | | (4s-6)+(3s-2)=180 | | 10-5(x-3)=25 | | x/2.5-15=-15 | | 8^x+5=16^2x+5 | | 3x-9=+3x | | ((8x^2)-(40))=470 |